go to top scroll for more

Projects


Projects: Projects for Investigator
Reference Number InnUK/132006/01
Title Synthetic Methane: Enabling Renewable Energy Storage by Integrating the Electricity and Gas Networks
Status Completed
Energy Categories Other Power and Storage Technologies(Energy storage) 20%;
Hydrogen and Fuel Cells(Hydrogen, Hydrogen production) 40%;
Renewable Energy Sources(Bio-Energy, Production of other biomass-derived fuels (incl. Production from wastes)) 40%;
Research Types Applied Research and Development 100%
Science and Technology Fields BIOLOGICAL AND AGRICULTURAL SCIENCES (Biological Sciences) 40%;
PHYSICAL SCIENCES AND MATHEMATICS (Chemistry) 20%;
ENGINEERING AND TECHNOLOGY (Electrical and Electronic Engineering) 40%;
UKERC Cross Cutting Characterisation Not Cross-cutting 75%;
Sociological economical and environmental impact of energy (Other sociological economical and environmental impact of energy) 25%;
Principal Investigator Project Contact
No email address given
ITM Power (Research) Limited
Award Type Feasibility Study
Funding Source Innovate-UK
Start Date 01 June 2015
End Date 31 August 2015
Duration 3 months
Total Grant Value £26,188
Industrial Sectors
Region Yorkshire & Humberside
Programme Competition Call: 1501_FS_ENRG_ESSCS - Intergrated Supply Chains for Energy Systems. Activity Integrated supply chains for energy systems
 
Investigators Principal Investigator Project Contact , ITM Power (Research) Limited (28.448%)
  Other Investigator Project Contact , School of Applied Sciences, University of Glamorgan (42.103%)
Project Contact , Wessex Water Services Ltd (5.728%)
Project Contact , BPE Design and Support Limited (19.841%)
Project Contact , Wales and West Utilities (3.880%)
Web Site
Objectives
Abstract To realise the potential of renewable energy to reduce greenhouse gas emissions, it is recognised that flexible energy storage is required; ideally for long periods of time, even seasonally. The production of renewable combustible gases such as synthetic methane is an emerging technology that can bridge that gap. Synthetic methane is synthesised by an innovative biomethanation process using hydrogen produced by electrolysis and carbon dioxide from sources such as water treatment, anaerobic digestion and industrial processes. Rapid response electrolysis provides a means of balancing intermittent renewable generation and solving electricity grid frequency problems arising from their increasing use. The UK gas infrastructure has the capacity to store and distribute over three times the energy distributed by the electricity network and represents an underutilised asset for the storage of renewable energy. Synthetic methane production is unique in being able to link the electricity and gas networks as a means of balancing renewable energy production, provide long-term storage of energy, decarbonising the largest source of heat in the UK and improve security of supply.To realise the potential of renewable energy to reduce greenhouse gas emissions, it is recognised that flexible energy storage is required; ideally for long periods of time, even seasonally. The production of renewable combustible gases such as synthetic methane is an emerging technology that can bridge that gap. Synthetic methane is synthesised by an innovative biomethanation process using hydrogen produced by electrolysis and carbon dioxide from sources such as water treatment, anaerobic digestion and industrial processes. Rapid response electrolysis provides a means of balancing intermittent renewable generation and solving electricity grid frequency problems arising from their increasing use. The UK gas infrastructure has the capacity to store and distribute over three times the energy distributed by the electricity network and represents an underutilised asset for the storage of renewable energy. Synthetic methane production is unique in being able to link the electricity and gas networks as a means of balancing renewable energy production, provide long-term storage of energy, decarbonising the largest source of heat in the UK and improve security of supply.To realise the potential of renewable energy to reduce greenhouse gas emissions, it is recognised that flexible energy storage is required; ideally for long periods of time, even seasonally. The production of renewable combustible gases such as synthetic methane is an emerging technology that can bridge that gap. Synthetic methane is synthesised by an innovative biomethanation process using hydrogen produced by electrolysis and carbon dioxide from sources such as water treatment, anaerobic digestion and industrial processes. Rapid response electrolysis provides a means of balancing intermittent renewable generation and solving electricity grid frequency problems arising from their increasing use. The UK gas infrastructure has the capacity to store and distribute over three times the energy distributed by the electricity network and represents an underutilised asset for the storage of renewable energy. Synthetic methane production is unique in being able to link the electricity and gas networks as a means of balancing renewable energy production, provide long-term storage of energy, decarbonising the largest source of heat in the UK and improve security of supply.To realise the potential of renewable energy to reduce greenhouse gas emissions, it is recognised that flexible energy storage is required; ideally for long periods of time, even seasonally. The production of renewable combustible gases such as synthetic methane is an emerging technology that can bridge that gap. Synthetic methane is synthesised by an innovative biomethanation process using hydrogen produced by electrolysis and carbon dioxide from sources such as water treatment, anaerobic digestion and industrial processes. Rapid response electrolysis provides a means of balancing intermittent renewable generation and solving electricity grid frequency problems arising from their increasing use. The UK gas infrastructure has the capacity to store and distribute over three times the energy distributed by the electricity network and represents an underutilised asset for the storage of renewable energy. Synthetic methane production is unique in being able to link the electricity and gas networks as a means of balancing renewable energy production, provide long-term storage of energy, decarbonising the largest source of heat in the UK and improve security of supply.To realise the potential of renewable energy to reduce greenhouse gas emissions, it is recognised that flexible energy storage is required; ideally for long periods of time, even seasonally. The production of renewable combustible gases such as synthetic methane is an emerging technology that can bridge that gap. Synthetic methane is synthesised by an innovative biomethanation process using hydrogen produced by electrolysis and carbon dioxide from sources such as water treatment, anaerobic digestion and industrial processes. Rapid response electrolysis provides a means of balancing intermittent renewable generation and solving electricity grid frequency problems arising from their increasing use. The UK gas infrastructure has the capacity to store and distribute over three times the energy distributed by the electricity network and represents an underutilised asset for the storage of renewable energy. Synthetic methane production is unique in being able to link the electricity and gas networks as a means of balancing renewable energy production, provide long-term storage of energy, decarbonising the largest source of heat in the UK and improve security of supply.
Publications (none)
Final Report (none)
Added to Database 04/12/15